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Standard Model

We have a standard model of elementary particle physics.
It is based on

gauge symmetries SU(3) × SU(2) × U(1)

three families of quarks and leptons

a scalar Higgs boson

It is extremely successful,

but there are many free parameters

and some open questions.

Is there physics beyond the standard model?
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Outline

The Standard Model (SM)

Three basic questions

Reasons to go beyond the SM

Grand unification and supersymmetry

The beauty of SO(10)

Some group theory

Strong motivation for E8

String theory and extra dimensions

How to test?

Unification of Fundamental Interactions, München, October 2013 – p. 3/42



History

Gravity 1915

Quantum Electrodynmics (QED) ca. 1950

Yang-Mills theory for weak interactions 1954

"Higgs" mechanism 1964

Electroweak standard model 1967

Renormalizability of nonabelian gauge theories
ca. 1972

Quantum chromodynamics (QCD) ca 1973

Discovery of gauge bosons W± and Z0 1983

Discovery of Higgs boson 2012
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Standard Model
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A family of quarks and leptons

The gauge group is SU(3) × SU(2) × U(1)Y

(uα, dα)Y =1/6 (νe, e)Y =−1/2

(ūα)Y =−2/3 (ē)Y =1

(d̄α)Y =1/3

with α = 1, 2, 3 the SU(3)-index.
Observe that

∑

i

Yi = 0 and
∑

i

Y 3

i = 0
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(uα, dα)Y =1/6 (νe, e)Y =−1/2

(ūα)Y =−2/3 (ē)Y =1

(d̄α)Y =1/3 (ν̄)Y =0

with α = 1, 2, 3 the SU(3)-index.
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Three basic questions

Some fundamental questions remain unanswered

The origin of the structure of a family?

Why three copies ?
Question of I. Rabi: who ordered the muon?

Why gauge group SU(3) × SU(2) × U(1)?

and require physics beyond the Standard Model
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Three basic questions

Some fundamental questions remain unanswered

The origin of the structure of a family?

Why three copies ?
Question of I. Rabi: who ordered the muon?

Why gauge group SU(3) × SU(2) × U(1)?

and require physics beyond the Standard Model

Some other reasons to go beyond the SM

dark matter of the universe

baryon asymmetry

neutrino oscillations
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The Quest for Unification

magnetism

electricity
el.mag

weak interactions

SU(2)×U(1)

100 GeV

strong interactions (QCD)
1016 GeV
MGUT

celestrial
movement
terrestrial
movement

GUT

Gravitation

?

1019 GeV
MPlanck

Unification of Fundamental Interactions, München, October 2013 – p. 9/42



Standard Model
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Supersymmetric SM
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Susy thresholds

Unification of Fundamental Interactions, München, October 2013 – p. 12/42



New particles
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Supersymmetry

Unification of matter and radiation

consistent with grand unification

stabilizes the weak scale

provides candidates for dark matter

allows for a mechanism of baryogenesis
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Supersymmetry

Unification of matter and radiation

consistent with grand unification

stabilizes the weak scale

provides candidates for dark matter

allows for a mechanism of baryogenesis

Preferred grand unified gauge groups

SO(10) and SU(5) include SU(3) × SU(2) × U(1)

explain the structure of families of quarks and leptons

5̄ + 10 representations of SU(5)

16-dimensional spinor representation of SO(10)
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Binary code for quarks and leptons

(n1, n2, n3, n4, n5) with ni = 0, 1 and
∑

i

ni = even

(1, 1, 1, 1, 0) 5 combinations

(1, 1, 0; 1, 1) d̄

(1, 1, 1; 0, 1) (νe, e)

(1, 1, 0, 0, 0) 10 combinations

(1, 1, 0; 0, 0) ū

(1, 0, 0; 1, 0) (u, d)

(0, 0, 0; 1, 1) ē

(0, 0, 0, 0, 0) 1 combination ν̄e
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Basic questions: where are we?

We have made some pogress.

The origin of the structure of a family:
answer is 16-dim. spinor representation of SO(10)

Why three copies: not known yet,
but group theory is proven to be unsuccessful.

Why SU(3) × SU(2) × U(1):
is replaced by: why SO(10)?
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Basic questions: where are we?

We have made some pogress.

The origin of the structure of a family:
answer is 16-dim. spinor representation of SO(10)

Why three copies: not known yet,
but group theory is proven to be unsuccessful.

Why SU(3) × SU(2) × U(1):
is replaced by: why SO(10)?

Why SO(10)?

nothing special as it is a member of an infinite series

the same holds for SU(5)
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Dynkin diagrams

Lie groups come in 4 infinite series SU(N), SP (2N),
SO(2N + 1), SO(2N) and 5 exceptional groups.

Not all of them are useful for grand unification as they do
not provide chiral representation to explain parity violation
of weak interactions.
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Simply Laced Lie Groups
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Maximal Group E8

E8 is the maximal group.

There are, however, no chiral representations in d = 4.
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E7

Next smaller is E7.

No chiral representations in d = 4 either.
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E6

E6 allows for chiral representations even in d = 4.
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E5 = D5

E5 is usually not called exceptional.

It coincides with D5 = SO(10).
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E4 = A4

E4 coincides with A4 = SU(5).

Unification of Fundamental Interactions, München, October 2013 – p. 23/42



E3

E3 coincides with A2 × A1 which is SU(3) × SU(2).
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Strong motivation for E8

E8 would require higher dimensions

E8 is strongly motivated from string theory
(E8 × E8 heterotic string and M/F theory)

E8 has chiral representations in d = 8n + 2

String theory requires d = 10

E8 broken in process of compactification (e.g. to E5)
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Strong motivation for E8

E8 would require higher dimensions

E8 is strongly motivated from string theory
(E8 × E8 heterotic string and M/F theory)

E8 has chiral representations in d = 8n + 2

String theory requires d = 10

E8 broken in process of compactification (e.g. to E5)

String theory would give a consistent completion of SM

consistent theory of quantum gravity

unification of all interactions
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The Quest for Unification
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Three basic questions, again

Some basic questions are answered.

The origin of the structure of a family:
answer is 16-dim representation of SO(10)

Why three copies:
topological properties of compactified extra dimensions

Why SO(10)?
It is the grand-grand daughter E5 from E8.
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Three basic questions, again

Some basic questions are answered.

The origin of the structure of a family:
answer is 16-dim representation of SO(10)

Why three copies:
topological properties of compactified extra dimensions

Why SO(10)?
It is the grand-grand daughter E5 from E8.

These questions cannot be answered within the SM!

need new experimental input

theoretical constructions that include quantum gravity
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Physics beyond the SM

Standard model is incomplete

problems with unification

dark matter

baryogenesis

inclusion of gravity
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Physics beyond the SM

Standard model is incomplete

problems with unification

dark matter

baryogenesis

inclusion of gravity

There must be new physics somewhere.

Where is it?

Is it at the TeV scale?

Why is there no signal yet at the LHC?
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LHC and physics beyond SM
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Strong constraints from the Higgs mass of 126 GeV.
The coloured regions are excluded while the hatched
region indicates the current reach of the LHC.
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Benchmark model
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The quest for “Precision Susy”

Two important arguments for supersymmetry

solution to the hierarchy problem

gauge coupling unification

We want to take these two arguments as serious as
possible and reanalyze the MSSM within this scheme.
We make two assumptions:

demand precision gauge unification

require smallest supersymmetric masses possible

What are the consequences for the search at LHC?
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Susy thresholds
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Precision gauge unification
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Unification versusMSUSY
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MSUSY should thus be in the few-TeV range.
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The Susy-Scale

If all supersymmetric partners have the same mass M,
then MSUSY = M .
For non-universal masses we have an effective scale:

MSUSY ∼

m
32/19

fW
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eg
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LHC limits are weak
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Dark Matter Relic Density
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Distribution of thermal neutralino relic density for the
benchmark sample with (solid) or without (dashed) the
assumption of precision gauge coupling unification.
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Limits from direct detection
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Direct detection experiments might check the scheme.
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Conclusions

The quest for unification

requires new physics (like e.g. supersymmetry)

Basic questions could be answered

family as a 16-dim spinor of SO(10)

SO(10) as the grand-grand daughter of E8

extra dimensions explain repetition of families

Consequences:

search for new physics remains necessary

we need new (experimental or theoretical) input!
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LHC and the Higgs mass
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Strong constraints from the Higgs mass of 126 GeV.
The coloured regions are excluded while the hatched
region indicates the current reach of the LHC.
Supersymmetry might be hidden.
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LHC Limits are (still) weak
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The LHC shows us where to go
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