Exercises on Theoretical Elementary Particle Physics

Prof. H. Dreiner

In the lecture it was shown that when calculating $\langle |\mathcal{M}|^2 \rangle$ it is useful to know¹

$$\sum_{all\ spins} \left(\bar{u}(a) \Gamma_1 u(b) \right) \left(\bar{u}(a) \Gamma_2 u(b) \right)^* = \text{Tr} \left[\Gamma_1 (\not p_b + m_b) \gamma_0 \Gamma_2^{\dagger} \gamma_0 (\not p_a + m_a) \right].$$

There are no spinors on the RHS, so all one is left with is mere matrix multiplications and taking a trace (that's great!). Thus it is useful to know various **trace- and contraction theorems**. Thus show that

1.
$$Tr[AB] = Tr[BA]$$

2.
$$Tr[M^{-1}AM] = Tr[A]$$

3.
$$-\gamma_{\mu} = \gamma_5 \gamma_{\mu} (\gamma_5)^{-1}$$
, with $\gamma_5 = \frac{-i}{4!} \varepsilon_{\mu\nu\alpha\beta} \gamma^{\mu} \gamma^{\nu} \gamma^{\alpha} \gamma^{\beta}$

4.
$$\text{Tr}[\gamma^{\mu_1}...\gamma^{\mu_{2n+1}}] = 0$$

5.
$$\operatorname{Tr}[\gamma^{\mu}\gamma^{\nu}] = 4\eta^{\mu\nu}$$

6.
$$\not a \not b + \not b \not a = 2a \cdot b \ 1$$

7.
$$\gamma^{\mu}\gamma_{\mu} = 4$$
 11

8.
$$\gamma^{\mu}\gamma^{\lambda}\gamma_{\mu} = -2\gamma^{\lambda}$$

¹Warning: In *Griffiths* this formula is called "Casimir's trick", but nobody else uses this name.

Exercises on Theoretical Elementary Particle Physics

Prof. H. Dreiner

- 1. $\text{Tr}[\gamma^5 \gamma^{\mu_1} ... \gamma^{\mu_{2n+1}}] = 0$
- 2. $Tr[\gamma^5] = 0$ (without going to a particular representation)
- 3. $Tr[\gamma^5 \gamma^\mu \gamma^\nu] = 0$ (without going to a particular representation)
- 4. (optional, for freaks) $\text{Tr}[\gamma^5 \gamma^\mu \gamma^\nu \gamma^\alpha \gamma^\beta] = 4i\epsilon^{\mu\nu\alpha\beta}$
- 5. (optional, for freaks) $\text{Tr}[\gamma^{\mu}\gamma^{\nu}\gamma^{\lambda}\gamma^{\sigma}] = 4(\eta^{\mu\nu}\eta^{\lambda\sigma} \eta^{\mu\lambda}\eta^{\nu\sigma} + \eta^{\mu\sigma}\eta^{\nu\lambda})$
- 6. $\gamma_{\mu}\gamma^{\nu}\gamma^{\lambda}\gamma^{\mu} = 4\eta^{\nu\lambda}$
- 7. $\gamma_{\mu}\gamma^{\nu}\gamma^{\lambda}\gamma^{\sigma}\gamma^{\mu} = -2\gamma^{\sigma}\gamma^{\nu}\gamma^{\lambda}$
- 8. $\gamma_{\mu} \not a \not b \not e \gamma^{\mu} = -2 \not e \not b \not a$
- 9. For $e^+e^- \longrightarrow e^+e^-$ calculate (using Feynman rules for spinors) at tree-level \mathcal{M} , $\langle |\mathcal{M}|^2 \rangle$, $\frac{d\sigma}{d\Omega}|_{CM}$, σ (for the last two you may consider only the ultrarelativistic case). Note that $e^+e^- \longrightarrow e^+e^-$ contains more diagrams than $e^+e^- \longrightarrow \mu^+\mu^-$